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An algorithm is proposed which uses the variational method of boundary elements and an analytic 

consideration of the singularities of the stress field in the neighbourhood of the tip of the crack and 

makes use of a singular solution of the Lam6 equation. The formulation of the crack problem consider - 
ed takes into account all types of strains: normal cleavage, and transverse and longitudinal shear. The 

specified vector of the normal stresses on the surface of the crack is represented in the form of the sum 

of a regular component and a singular component, due to the presence of a singular point-the tip of 

the crack, leading to the presence of higher-order singularities of the stresses compared with existing 

algorithms. 

THE POSSIBIL~IY of a variational formulation for the boundary functional of crack problems was pointed 

out in [l] (see the contribution by R. V. Gol’dshtein), and the Ritz process in coordinate functions was 

used for the numerical realization of the formulation, which takes into account the asymptotic form of the 

solution in the region of singular points of the crack contour. This formulation of the problem was further 
developed in [2]. The problem of taking into account the singularities of the stress field in the neighbour- 
hood of the crack tip uses both analytical and numerical examples [3]. In particular, when solving the 
problem using the method of finite elements, the numerical modelling of these singularities involves 
choosing special “singular” finite elements, which complicates the numerical procedure [3]. The 
approaches described in [3] enable one to bring about the singularities of the stresses of order r,1’2 and 

r,-‘, where r, is the distance from the crack tip. 
The basis of the proposed algorithm is a numerical-analytical modelling of the singularity of the 

stresses: first, the idea consists of the fact that the result of the presence of a singular point is regarded as a 

stress field, generated by the action of a single force applied at this point; secondly, the numerical 

realization uses the method of boundary elements for a constructive description of the singularity, in 

particular, the concept of multiple nodes [4]. 

1. Consider the stressed state of an elastic medium G c ES”’ (m=2, 3) with a crack in the (x(l), x”‘) 
plane; assuming that the cavity of the crack is of unlimited extent along the xc3) axis, the stressed state can 
be regarded as planar and the component of the load on the contour of the crack S, which gives rise to 
deformation of longitudinal shear (along the xc3) axis) can be taken as zero. This type of deformation is 
taken into account in the spatial formulation of the problem [3, p. 831 and the possibilities of an algorithm 
for realizing this formation are discussed below. Henceforth, for the plane region G the crack contour S is 
regarded as the inner boundary with singular points-the crack tips on the x(l) axis, and the x@) axis is 
the vertical axis of symmetry. 
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The problem of finding the equilibrium state of the medium G when acted upon by stresses uczt) I -uO, 
u’“2’ I -To, uniformly distributed on the boundary S (the notation is partially taken from [3]) corresponds 

[.5] to the solution of the second external problem of the linear isotropic theory of elasticity (ignoring 

mass forces). This problem is uniquely solvable [5] provided that the required strains and stresses are 
regular at infinity (u(r), u(r) + 0, r + -). Its solution can be replaced [S] by the solution of the equiv- 
alent variational problem for a quadratic energy functional on permissible functions regular at infinity 
(below, to approximate the solution, these functions are discrete boundary potentials [6, 91, which satisfy 
the above conditions of regularity), which corresponds to finding the solution with finite energy. 

The solution of this problem can, in turn, be reduced (with appropriate justification 16, 91) to the 
problem of unrig a boundary functional of the form 

F(u)= ]t(“)(u)l&2]g%ffs (1.1) 
s s 

on the set of solutions u = (u(r), I&*)) of the homogeneous Lame equation, and we will denote this set by 

D. In (1.1) t(‘)(u) is the vector of the required stresses at the points y = (y(l), y@)) E S in the direction of 
the outward normal v to S, and g(“) is the vector of the specified normal stresses, which we shall represent 
in the form 

where &‘(a,, T,,) is the regular component 

gy =(-qJ)P +(__ITo)j(2) (1.3) 

(I(‘) (i = 1, 2) are the direction cosines of the normal v), &” is the singular component due to the 

presence of a singular point-the crack tip y, ES and the corresponding singular solution of the Lame 
equation when the source is situated at the point y,,. We will use the components of the stress tensor T(V) 
to determine gp) (where V is the Somigliana tensor [lo]) and g$‘) is the component of t(“)(~v(“)), where 
[d”‘)] ,_,,z is the row vector of the tensor V(x,y) when n =yO, y ES. Hence, this method enables us to 
obtain the singularity of the stress field in the neighbourhood of the crack tip of the order of r,” (since the 
components of the tensor T have this singularity [lo] when y 4 x). 

Suppose the strain vector u0 is a solution of the problem mm, F(u), u ED. Then u. satisfies the 

variational equation 

~t’“‘(u,)uds-jg %ds = 0, QUED (1.4) 
s s 

Hence, it follows, in particular, that this singularity of the required stresses in the neighbourhood of the 

point y, ES can be realized integrally. The algorithm of the variational method of boundary elements [9] 
essentially reduces to approximating and solving Eq. (1.4). 

2. According to the algorithm described earlier 191, the permissible functions of the discrete variational 
problem (we are dealing with the approximation of the set D and of the functional (1.1)) are a sequence 
of discrete boundary potentials with the required density in the form of interpolation functions of the 
method of finite elements, which approximate the strain and stress field at points of the finite (boundary) 
element. Global inte~olation functions at points of the discrete boundary, compiled taking the condition 
for the boundary elements to be consistent into account, have the form 

UN = CCU,wr, t(“A)(u&= ~)=t’““‘w&L) cw 
nk nk 

where U, is the vector of the required strains at the nodes k = 1, _ . . , I( of the boundary element As, and 
S&=UAs, (II=&..., N ) is the discrete boundary. Hence, in (2.1) and henceforth the summation over k 
andn is carried out from 1 to K and from 1 to N, respectively. The order of the approximations (2.1) is 
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determined by the order of the basis functions of the method of boundary elements w*(q), where rj is the 

local coordinate of the points of the element As, and v, is the outward normal at the points As,. 

Henceforth the subscript A will denote quantities belonging to the boundary S,, or the region G,. 
The use of the Ritz process to solve the discrete variational problem on approximations (2.1) leads to 

the solution of a discrete variational equation (the approximating equation (1.4)), which is converted 
[6, 91 into a Ritz system of linear algebraic equations of order 2K, in the components Ufi (i=l, 2), 
where KN is the number of nodes of S,. The symmetrical matrix of this system has a band structure, and 
the width of the band depends of the order of the approximation (2.1). 

We will’ use as an example a linear isoparametric approximation. Then k = 1, 2, Q E [-1, 11, and the 
parametric equation of the crack contour S, has the form 

yl;‘)ol)= CCY$vk(?) * i=1.2 
nk 

(2.2) 

where y$ are the Cartesian coordinates of the nodes of the subdivision of S,. The Ritz system is formed 

from the discrete boundary equations, which are made up in a “pattern” [9, p. 4481. The approximation at 

the points S, of the vector of the specified stresses (see (1.2)) is taken to be similar to (2.1) in form 

gN (“*) = +$!kh). q E &, 

where g$ (i = 1, 2) is the component of the nodal values of this approximation. The calculation of g:A 
uses relation (1.3), the calculation of & uses known formulae [lo] for the components of the tensor 
T(V) (see Sec. l), and these nodal values depend on the distance of the node k from the node in the 
neighbourhood of the crack tip 

ran = &Yq2 I 1 
x 

On , y$’ = yz -2 . Vn 
i=l 

When writing the equations in the neighbourhood of the crack tip we will consider additional 
symmetrically situated nodes k+ and k_ in a-fairly small (assigned in advance) neighbourhood of the tip. 
This method (according to the idea of multiple nodes [4, p. 1961 takes into account the fact that at the 

node which coincides with the crack tip the components of the stresses g& (i = 1, 2) are not determined, 
and the choice of the dimensions of the neighbourhood affects the accuracy with which the stress intensity 
factor can be determined. From the solution of the Ritz system [U$) i = 1, 2; k = 1, 2; n = l, . . . , N the 
component Vi? represents the opening of the crack at nodal points of the contour S,. 

3. With the approximations (2.1) the “Ritz” solution of the initial boundary-value problem can be 

represented [9] in the form of the superposition of the vector-potentials of a double and simple layer 

(3-l) 

where a,, are scalar “influence” functions of the kth node, and the nth boundary element is found as in 
[9, p. 4461. The components of the stresses UC’), ar), ug2) on the x(r) axis when Ix(r) I> 1, where 21 is the 

crack length, can be found in terms of the components of the strains a$) (i = 1, 2) using the well-known 
relations of the linear isotropic theory of elasticity. The stress intensity factors for the case of the loading 

of a crack considered are given by [3, p. 831 

(3.2) 

while the stresses on the x(l) axis when I x(l) I > I, xC2) = 0 are found from the formulae 
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(3.3) 

Hence, relations (3.1)-(3.3) are used for a test check of the stress intensity factor when 

#l) = ##1) 
N ’ 

p) = u(N22), ,w = ,p 

which corresponds to the direct method of finite elements [3, p. 911 for determining the stress intensity 
factor. 

4. It is possible to extend the above algorithm to obtain a spatial formulation of the crack problem, for 

example, for the elliptic cavity of the crack, in which the component of the load along the x”) axis is taken 

into account and correspondingly the longitudinal shear strain [3, p. 831. The crack surface can be 

triangulated and a two-dimensional neighbourhood along the line of the crack edges can be separated in 
order to take into account the singularity of the stress field. An example of such a boundary-element 
approximation of the variational problem for a functional of the form (1.1) was considered in [9] when 
solving the spatial problem for part of a sphere, with the singularity of the boundary conditions specified 
on lines being distinguished. To estimate the “Ritz” approximations one can use a posteriori estimates of 

the error [9], where there is no need to solve the dual problem, since the right-hand side of these 
estimates, which depends on the difference in the values of the functionals of the dual problems on their 

approximate solutions, reduces to the form [9] 

In conclusion we note that the variational formulation described is connected in the sense that the 
boundary strains and stresses are connected by defining relations, and approximations (2.1) are also 
correspondingly connected. An alternative unconnected formulation is possible [ll], when these relations 
are satisfied as connection equations using Lagrange multipliers. Then the approximations of the stress 
field, irrespective of the approximation of the strain field, can be taken a priori to be of higher order for 
taking into account the singularity in the neighbourhood of the crack tip (the subparametric approxi- 

mation). Discrete boundary equations are derived in [ll] for this approximation. 
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